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Overview 
 

Brainlike offers a unique monitoring system based on an automated kernel module.  In its 

simplest form, the Brainlike kernel “sniffs” input data in real-time.  Whenever computer input 

data values are unexpected, the kernel sends an electronic alert signal.  The Brainlike kernel 

offers a huge technology advantage: the capacity to “sniff out” truly unexpected events in a sea 

of changing background activity  with high precision and complete automation. 

 

Animals routinely and automatically sniff out opportunities or dangers in novel and continuously 

changing environments.  They do this by continuously adapting their alertness threshold levels to 

surrounding conditions.  Likewise, the Brainlike computing system employs continuous learning 

of expected background conditions for identifying developing problems from real-time data. 

 

Since background noise levels are always changing, effectively sensing what’s unexpected 

requires that sensed activity levels be compared to background baseline levels.  Under novel or 

changing background conditions, these baseline comparison levels should be continuously and 

efficiently updated.   The Brainlike kernel has been carefully designed to do just that  far more 

effectively, automatically, and efficiently than any available alternative. 

 

The key Brainlike benefit is greatly reduced total operating cost, which results directly from 

superior monitoring precision and efficient learning automation.  Operational monitoring costs 

are directly tied to false alarm rates and target hit rates.  The monitoring community complains 

most loudly about excessive false alarm rates.  Every false alarm response costs money.  Not 

responding to a real target event costs much more.  Time and money wasted chasing false alarms 

could be better spent attending to real threats. 

 

Responding or not responding to questionable alarms represents a tradeoff.  Monitoring 

managers must decide how much they can cut costs by responding to fewer questionable alarms, 

at the expense of failure to prevent costly incidents.  Insofar as a monitoring system is precise, 

fewer questionable alarms result and fewer leading indicators of developing problems will be 

missed.  Brainlike technology can add major value over non-adaptive alternatives  by greatly 

improving both false alarm and target hit rates through adaptive alarm threshold monitoring. 

 

Maintaining monitoring precision under changing conditions thus requires continuous learning.   

Continuous learning without automation can be expensive or even impossible.  Precise 

monitoring requires comparing observed input values with precisely estimated expected alarm 

thresholds.  Creating and maintaining mathematical models that precisely compute expected 

alarm thresholds costs money.  Building, deploying, and updating monitoring estimation models 

that reflect all anticipated field conditions requires expert analyst resources  often far too many 

resources to be affordable. 
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Brainlike technology offers a far cheaper alternative to expert data analysis.  Using a unique 

process that has been patented and commercially proven, the Brainlike kernel removes 

estimation costs by learning continuously and automatically.  Each time a set of input values 

arrives, the kernel automatically updates its learned parameters very quickly.  It also uses its 

learned parameters to compute estimated input values that are compared with actual values in 

order to assess deviance. 

 

Figure 1 illustrates monitoring applications for Brainlike kernel technology.  In monitoring 

applications, kernel processing units (KPUs) reduce sensor selected array data to anomaly alerts 

at each sensor array buoy shown in the figure.  Alerts are sent only when sensor levels deviate 

significantly from their expected values.  By continuously adjusting expected values for 

changing conditions, alerts are transmitted sparingly, resulting in high selectivity, sensitivity, and 

signal-to-noise ratios.  Alarm thresholds are automatically adjusted for changing ambient 

temperature, salinity, sensor calibration drift, and even target characteristics.  

 

 
Figure 1.  Monitoring Application Illustration 

 

In it current form, the Brainlike kernel operates as a software module, which is integrated into a 

real-time data acquisition platform.  For example, one version is being used for monitoring 

server farm performance.  This version is implemented in conjunction with standard application 

performance monitoring platforms such as BMC Patrol and NETIQ AppManager.   For each 

server being monitored, the kernel operates each time it’s called by comparing about 100 counter 

values for the server to the values it has learned to expect.  At the same time it returns counter 
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level and server level alert values accordingly, and it updates its learned parameters, after which 

it awaits the next monitoring call. 

 

For the above monitoring example, the Brainlike kernel would operate in a similar fashion, in 

real-time and in conjunction with a data acquisition processor such as the QUIPS system.  The 

kernel would be called at each time point by comparing actual against expected values, returning 

alerts accordingly, updating its learned parameters, and awaiting the next call.  The platform 

could be a central processor receiving multiple buoy information, a single buoy receiving 

multiple array information, or a single array receiving multiple sensor information. 

 

Specific Technology Benefits 
 

This section outlines how Brainlike solutions could meet key surveillance needs that were listed 

in a recent NASA solicitation.  The reports that are cited below review specific monitoring case 

studies and provide basic Brainlike technology details. 

 

Minimizing the time between data acquisition and decision making: equipment health 

monitoring.  The Brainlike Equipment Monitoring report describes a structural test of an 

expensive aircraft wing.   During a structural test of an expensive aircraft wing, the wing broke.  

The structural test engineer showed that with Brainlike strain gauge monitoring, the test would 

have been stopped and huge losses in time and money would have been prevented. 

 

Minimizing the time between data acquisition and decision making: sonar sensor monitoring.  

The Military Attack Prevention report describes a case study where the Brainlike kernel 

converted hard-to-interpret sonar information into easy-to-understand form, in real time.  

Without the Brainlike kernel, subtle leading indicators of a submarine attack would not have 

been noticed. 

 

Minimizing the time between data acquisition and decision making: power system monitoring.  

The Brainlike Monitoring Improvement Illustration report shows that the Brainlike kernel can 

identify developing electrical problems early enough to take effective action.  Without Brainlike 

technology, such problems would remain unnoticed and cause result in major breakdowns. 

 

Minimizing the time between data acquisition and decision making: cyber security.  Brainlike is 

assisting an ARDA funded effort to establish effective responses to sophisticated cyber attacks.  

Part of that effort will require Brainlike monitoring for unexpected activity at very low levels. 

 

Minimizing the time between data acquisition and decision making: disease surveillance.  

Brainlike is assisting in a study to identify causes and remedies for a major national health 

epidemic.  Brainlike technology will figure heavily into identifying unexpected survey responses 

as they are being gathered, and in quickly identifying risk profiles that are most dangerous.  

Without Brainlike technology, data analysis turnaround for the study could take months.  With 

Brainlike technology data analysis updating will be immediate and continuous throughout the 

study. 

 

http://www.brainlike.com/
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Testing and evaluation.  With a mission of maintaining inter-command communications 

integrity, units like the Navy Center for Tactical Systems Interoperability (NCTSI) continuously 

test and evaluate electronic message communication quality.  Units like these seek monitoring 

solutions that are both highly accurate and fully automated in order to minimize its total 

operating costs.  Brainlike intends to deliver solutions that will do just that. 

 

Monitoring on data acquisition and management platforms.  Brainlike kernels reside on existing 

data acquisition and management platforms in the form of subroutines.  For server farm 

monitoring, Brainlike kernels add value to commercial application performance monitoring 

platforms such as BMC Patrol or NetIQ AppManager.  For submarine monitoring, they would 

reside on a platform like the QUIPS System (see Military Attack Prevention).  For condition 

monitoring, they would reside on a system such as National Instruments LabView or a suitable 

alternative.   

 

Sensor validity monitors.  Brainlike kernels have been implemented as compact subroutines for 

implementation in special-purpose, on-board microprocessors.  In one application, Brainlike 

monitoring showed when novel contamination sensor readings from photonic arrays should be 

transmitted.  In related applications (see Technology Details below), Brainlike monitoring on 

nano-sensors will identify when novel sensor readings should be sent from computer chips. 

 

Electrical system monitoring and fire prevention.  See the Brainlike Monitoring Improvement 

Illustration report. 

 

Autonomous model updating.  As illustrated in the Brainlike Advantage, report, autonomous 

model updating is the key Brainlike feature. 

 

Lowering the cost of online equipment health monitoring applications.  The Huge Overall 

Savings report contains a detailed return-on-investment (ROI) analysis of Brainlike technology 

from a financial perspective.  Major gains can be expected in Brainlike solutions, because false 

alarms, manual efforts, and missed target events can be enormously expensive in the long run. 

 

Modular use of the same technology at multiple decision-making levels, and for many 

applications.  Figure 1 illustrates how Brainlike kernels will be distributed over a multi-layer 

network.  While the figure applies only to shallow water detection, the system it describes is very 

general, and it could be applied effectively in a variety of applications that are unrelated to 

submarine detection.   

 

Costly incident prevention.  One of the key themes underlying the Brainlike value proposition is 

identifying developing problems early enough so that preventive action can be taken prior to 

catastrophic failure.    

 
Technology Details 
 

The following technical explanation summarizes an extensive research and development 

bibliography [1-17].  Brainlike kernel technology adapts to changing conditions automatically 

and continuously.   Monitoring systems based on the technology produce alarms only when 

http://www.brainlike.com/
http://brainlike.com/pdf/monitoring_improvement.pdf
http://brainlike.com/pdf/monitoring_improvement.pdf
http://www.brainlike.com/index.php?index.php?option=com_content&view=category&layout=blog&id=12
http://brainlike.com/pdf/advantage.pdf
http://brainlike.com/pdf/savings.pdf
http://brainlike.com/pdf/savings.pdf


  

 
 

  
 Brainlike, Inc.                                  www.Brainlike.com 

 

observed sensor levels differ significantly from their expected values.  Expected values are 

updated continuously in order to reflect changing conditions.  By adjusting expected values 

continuously, the technology reduces false alarms and reduces information to its monitoring 

essence. It also operates automatically, removing the need for re-tuning. 

 

Resulting precision improvements and cost reductions have prompted significant venture funding 

for commercial development of software products that monitor computer servers.  These 

products, which are currently satisfying corporate server farm customers, receive multiple 

performance indicators arriving in arrays containing up to several hundred values at each arrival 

time.  Arrival times for each array may be separated by a few seconds or less. 

 

Along with its proven advantages when implemented as software, the technology offers larger  

thus far unexploited  advantages when implemented as hardware [1-2].  Kernel technology is 

based on an algorithm that is compact, separable, fast, and designed for on-chip implementation 

[3-4].  When implemented in hardware, the kernel algorithm can receive multiple sensor outputs 

arriving as arrays, just as in software.  However, hardware arrival times for each array can be 

only a few microseconds or less. 

 

When implemented in either software or hardware, the kernel algorithm performs three basic 

operations between each sensor array arrival time.  First, it computes expected sensor array 

values.  Second, it determines if the sensors’ expected values differ significantly from their 

actual values, and produces alarm signals accordingly.  Third, and most important, the kernel 

algorithm updates its learned parameters efficiently. 

 

Efficient, real-time learning operation distinguishes Brainlike technology from all alternatives.  

Learning is most important because it allows monitoring and control systems to operate more 

effectively by adapting to changing conditions.  Efficient learning is especially important for data 

reduction at the micro-electronic level, because it can be implemented on a chip for fast, 

compact, and rugged operation.  Data reduction at the micro-electronic level is critically 

important because sensor array transmission capacity is often limited and inter-chip transmission 

capacity is extremely limited. 

 

Learning is also important for control at the micro-electronic level, because it can be tailored to 

suit numerical optimization.  When implemented in this way, the kernel algorithm can identify 

optimal parameter values far faster than conventional methods.  Related applications include 

electronic antenna and sensor array pointing, among many others inside and outside the shallow 

water intrusion detection domain. 

 

Brainlike enabling technology resembles regression analysis in that it computes the expected 

value of each monitored variable as a function of all other current values of other monitored 

variables.  It resembles auto-regressive, moving average analysis in that it also uses recent values 

to compute expected values.  It also resembles empirical Bayes methods in that it updates learned 

parameters by combining current information with prior information at each time point.  It 

resembles Davidon-Fletcher Powell numerical optimization as well, in that it operates efficiently 

on the inverse of correlation matrices instead of requiring conventional matrix inversion.  The 

http://www.brainlike.com/
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technology combines these features to produce a robust, efficient, and fully automated 

monitoring process. 

 

 
                 Figure 2.  Data Layout                                                Figure 3.  Chip Layout  

 

As shown in Figure 2, at each array arrival time point the kernel receives a column of input 

values and imputes each current value as if it were missing.  Imputed values are used to replace 

input values when they are missing or deviant.  In addition, each imputed value is compared to 

its corresponding actual value to determine its deviance value, which is supplied by the kernel 

for monitoring purposes. Along with individual deviance values, the kernel supplies a global 

deviance value, which combines all input deviance values into a single number. 

 

As also shown in Figure 2, at each time point and for each input, multiple kernels may compute 

one or more forecast values, which may be used for control and other purposes. 

 

When used in this way, kernels can add monitoring value by increasing estimation precision in 

two distinct ways.  First, each imputed value for each input is computed not merely as a function 

of recent values for that input only, as in typical time series applications.  Instead, it is computed 

as a function of recent values for all inputs as well as current values for all other inputs.  Second, 

and more important, at each time point the kernel continuously and automatically updates 

learned estimation model parameters including means, correlations, regression weights, and 

deviance metrics. 

 

Kernel operation is fast and compact.  When implemented in software, any given kernel can 

receive 100 inputs, produce estimates, and update learned parameters in less than 100 

milliseconds, and over 5,000 kernel models can reside on a conventional server.  When 

implemented on chips, kernels will operate orders of magnitude more quickly and reside in 

orders of magnitude less space. 

 

The enabling technology has been developed to solve a variety of technical problems by 

performing certain technical correction functions automatically, without which auto-adaptive 

operations could not be sustained.  Some functions correct for developing linear redundancies 

and related numerical problems.  Others automatically identify and replace deviant and missing 
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values.  Others automatically reduce recent input values to smooth trend features that will not 

produce estimation excursions. 

 

As part of successful efforts to develop the enabling technology into software products, a broad 

variety of such problems have already been solved.  In the process, a scalable platform for 

hardware development, simulation, and testing has evolved as well.  While other problems will 

emerge as part of developing operational hardware, extensive software development experience 

to date on essentially the same algorithms offers a distinct advantage. 

 

Figure 3 shows a kernel chip layout [2].  Only 16 inputs are shown for clarity, but a kernel with 

several hundred inputs can reside on a single chip.  Digital versions of the chip shown in Figure 

1 can perform kernel operations much more quickly than its software counterpart, because each a 

distinct processor is dedicated to each input [3]. 

 

Analog chips corresponding to Figure 3 can perform kernel operations even more quickly by 

dedicating a separate analog component to each arithmetic operation [17]. 

 

Figure 4 shows how a kernel might be used to impute missing values and/or identify unexpected 

activity at one spatial node within a sensor array. Figure 4 shows how an array of Brainlike 

kernels might be used simultaneously to carry out the same operations for each node within the 

array.  The practical implications of Figure 5 for meeting future defense needs, given kernel 

speed and compactness, are substantial. 

 

 

 

 

 

 

 

 

 

 

 

 
       Figure 4.  Spatial Imputing Layout                Figure 5.  Distributed Spatial Processing  
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